Sampling Techniques with Probability

Arun Karnik
3 min readApr 5, 2021

Probability sampling involves the selection of a sample from a population, based on the principle of randomization or chance.

When each entity of the population has a definite, non-zero probability of being incorporated into the sample, the sample is known as a probability sample.

Probability samples are selected in such a way as to be representative of the population. They provide the most valid or credible results because they reflect the characteristics of the population from which they are selected.

Probability sampling is more complex, more time-consuming and usually more costly than non-probability sampling.

Random Sampling

When: There is a very large population and it is difficult to identify every member of the population.

How: The entire process of sampling is done in a single step with each subject selected independently of the other members of the population. The term random has a very precise meaning and you can’t just collect responses on the street and have a random sample.

Pros: In this technique, each member of the population has an equal chance of being selected as subject.

Cons: When there are very large populations, it is often difficult to identify every member of the population and the pool of subjects becomes biased. Dialing numbers from a phone book for instance, may not be entirely random as the numbers, though random, would correspond to a localized region. A sample created by doing so might leave out many sections of the population that are significant to the study.

Use case: Want to study and understand the rice consumption pattern across rural India? While it might not be possible to cover every household, you could draw meaningful insights by building your sample from different districts or villages.

Systematic Sampling

When: Your given population is logically homogenous.

How: In a systematic sample, after you decide the sample size, arrange the elements of the population in some order and select terms at regular intervals from the list.

Pros: The main advantage of using systematic sampling over simple random sampling is its simplicity. Another advantage of systematic random sampling over simple random sampling is the assurance that the population will be evenly sampled. There exists a chance in simple random sampling that allows a clustered selection of subjects. This can be avoided through systematic sampling.

Cons: The possible weakness of the method that may compromise the randomness of the sample is an inherent periodicity of the list. This can be avoided by randomizing the list of your population entities, as you would randomize a deck of cards for instance, before you proceed with systematic sampling.

Use Case: Suppose a supermarket wants to study buying habits of their customers. Using systematic sampling, they can choose every 10th or 15th customer entering the supermarket and conduct the study on this sample.

Stratified Sampling

When: You can divide your population into characteristics of importance for the research.

How: A stratified sample, in essence, tries to recreate the statistical features of the population on a smaller scale. Before sampling, the population is divided into characteristics of importance for the research — for example, by gender, social class, education level, religion, etc. Then the population is randomly sampled within each category or stratum. If 38% of the population is college-educated, then 38% of the sample is randomly selected from the college-educated subset of the population.

Pros: This method attempts to overcome the shortcomings of random sampling by splitting the population into various distinct segments and selecting entities from each of them. This ensures that every category of the population is represented in the sample. Stratified sampling is often used when one or more of the sections in the population have a low incidence relative to the other sections.

Cons: Stratified sampling is the most complex method of sampling. It lays down criteria that may be difficult to fulfill and place a heavy strain on your available resources.

Use Case: If 38% of the population is college-educated and 62% of the population have not been to college, then 38% of the sample is randomly selected from the college-educated subset of the population and 62% of the sample is randomly selected from the non-college-going population. Maintaining the ratios while selecting a randomized sample is key to stratified sampling.

--

--

Arun Karnik

Arun Karnik specializes in Business applications & AI, CRM, Chatbots, Automation, Data Analytics and participated in WIPO training & Digital Masters Conference.